
RVOT: A Tool For Making Collections OAI-PMH
Compliant

Abstract
A number of on-line journals and scientific
digital libraries (DL) exist today, however,
there is a lack of interoperability between these
libraries. Researchers have been looking at this
issue and one of the major efforts to address
technical interoperability among distributed
archives is the Open Archives Initiative (OAI).
The objective of OAI is to develop a low-
barrier, lightweight framework to facilitate the
discovery of content in distributed archives. In
this paper, we describe a tool, Rapid Visual
OAI Tool (RVOT), which can help small
organizations in making their collections OAI-
PMH (OAI Protocol for Metadata Harvesting)
compliant in a quick and convenient way.
RVOT can be used to graphically construct an
OAI-PMH repository from a collection of
files. It includes a metadata translation tool, a
lightweight HTTP server, and an OAI-PMH
request handler. The records in the original
collection can be in any of the supported
formats including RFC1807, MARC subset,
and COSATI subset formats. RVOT helps to
define a mapping visually from native format
to Dublin Core (DC) format, once the mapping
is defined, native metadata files are converted
to DC format metadata files, and the repository
becomes OAI-PMH compliant. RVOT is self-
contained, easy to install, and can be extended
to support new metadata formats.

1 Introduction
A number of on-line journals and scientific digital
libraries exist today, however, there is a lack of
interoperability between these libraries. One of the
major efforts to address technical interoperability
among distributed archives is the Open Archives
Initiative (OAI) [5,9]. The objective of OAI is to
develop a low-barrier, lightweight framework to
facilitate the discovery of content in distributed
archives. The OAI framework supports data providers
(repositories, archives) and service providers. Service

providers develop value-added services based on the
information collected from data providers. Data
providers are simply collections of harvestable metadata
that may or may not contain additional services and
content.

The digital library community is building a variety
of tools that can help in building, evaluating and testing
of OAI-PMH compliant libraries [6]. In Table 1 we
categorize OAI-PMH related tools. On the data provider
side, application packages (e.g. Dspace [11]) provide
complete software for building a data provider with an
integrated OAI-PMH module. Similarly, on the service
provider side we have off-the-shelf application
packages (e.g. CDSware [1]) and development
frameworks. These packages can be used either to
build a digital library from scratch or customize an
existing digital library.

An existing digital library can be made OAI-PMH
compliant by adding a software layer, which receives
OAI-PMH requests over HTTP, interacts with the
digital library to fetch the requested information and
sends out the results. Typically, this interaction involves
fetching the required metadata from the underlying
storage scheme followed by mapping of the metadata to
mandatory Dublin Core (DC) [14] format required by
OAI-PMH before sending it out. As this software layer
needs to understand the underlying DL implementation,
it tends to become specific for a DL. For large
organizations, development of such a software layer
specific to their library is not a major investment. For
this purpose one can possibly use development
frameworks such as NCSA Cocoa [4]. However, small
organizations would prefer a common tool that can be
configured to make their small collection OAI-PMH
compliant. For creating a new OAI-PMH library from
scratch, one can use application packages like EPrint
from Southampton [2]. However, the EPrint software
because of its installation and maintenance complexity
is suitable mostly for large organizations.

In this paper, we describe a tool, Rapid Visual OAI
Tool (RVOT), which can help small organizations in
making their collections OAI-PMH compliant. The
RVOT is designed to make small or medium
repositories OAI-PMH compliant quickly and

K. Sathish, K. Maly, M. Zubair

Computer Science Department
Old Dominion University

Norfolk, Virginia USA
{kumar_s,maly,zubair}@cs.odu.edu

X. Liu

Research Library
Los Alamos National Laboratory
Los Alamos, New Mexico USA

liu_x@lanl.gov

Table 1. OAI-PMH Related Tools

Category Tools

Application with OAI
component

Dspace, eprints.org, Kepler Data
Provider

Development framework UIUC OAI Implementation, OCLC OAICat, VTOAI
package, oaiperl, NCSA Cocoa

Application with OAI
component

Arc, CDSware, Clelestial, DP9, Repository Explorer Service
Provider

Development framework OCLC OAIHarvester, oaiperl, my.OAI

conveniently with very limited cost. RVOT can be used
graphically to construct an OAI-PMH repository from a
collection of files. It includes a metadata translation
tool, and a lightweight HTTP server including an OAI-
PMH request handler. The records in the original
collection can be in any of the supported formats
including RFC1807 [7], MARC [3] subset, and
COSATI subset formats. RVOT helps visually to
define a mapping from native format to DC format;
once the mapping is defined, native files are converted
to DC files, and the repository becomes OAI-PMH
compliant. The design of RVOT is such that it can be
extended to support new metadata formats. The tool is
self-contained; it comes with a lightweight HTTP server
and an OAI-PMH handler. The source code of RVOT is
available at http://rvot.sourceforge.net/.

2 Metadata Conversion and OAI-PMH
Request Handling
To make a repository OAI-PMH compliant, we need to
build support for (a) translating native metadata into a
standard metadata format required by OAI-PMH, and
(b) handling OAI-PMH requests. The RVOT provides
the capability to convert native metadata to DC format
and the ability to handle OAI-PMH requests for
metadata. We now describe the processes that have
been implemented in RVOT for handling metadata
conversion and OAI-PMH requests, and then describe
how the embedded OAI webserver handles OAI-PMH
requests.

2.1 Metadata Conversion

The metadata conversion process is illustrated in Figure
1. The conversion of native metadata files to DC begins
by the user1 first selecting the native format, specifying
the location of native metadata files and the location for
storing the translated DC files. Once the locations are
specified, the metadata parser corresponding to the
selected native format is invoked to parse the metadata
files and extract the set of elements used across all the
metadata files. Using the metadata-mapping interface
the user specifies a mapping between native elements

and DC elements. Once the mapping is specified, the
metadata parser is again invoked to perform the
conversion. The converted files are stored in the
location specified for DC files. A more detailed
explanation is provided in Section 3 and a sample
metadata conversion process is described in Section 5.

2.2 Handling OAI-PMH Request

RVOT comes with an OAI-restricted webserver (it does
not handle any other HTTP requests), which has two
components: HTTP server and OAI Handler. The HTTP
server receives OAI-PMH request embedded in an
HTTP request. The request is passed to the OAI-PMH
handler. The handler parses the request to get the OAI-
PMH verb that indicates the type of requests [8]. Based
on the verb, the OAI-PMH handler generates the
response using the metadata available in its repository.
A more detailed explanation is provided in Section 3.
Figure 1 shows the flow of requests and responses to
the OAI webserver.

3 The Rapid Visual OAI Tool Architecture
The RVOT application package consists of the
following major modules.

• Metadata Manager
• OAI Webserver
• Integrated Graphical User Interface (GUI).

Figure 2 illustrates the architecture of RVOT and

the interactions of the various components.

3.1 Metadata Conversion

Logically this module can be further classified into
three sub-modules

• Native to DC Mapping Definition Tool.
• Native to DC Metadata Converter.
• Metadata Publishing Tool.

Figure 1. Metadata Conversion Process

Native to DC Mapping Definition Tool

The handling of the user’s input (native format and
location selection) to this module is provided using the
GUI. Based on the selection, the metadata manager
interacts with the appropriate Native to DC Metadata
Converter and displays the metadata mapping interface
with a set of native elements and DC elements. A
mapping between native and DC elements can be then
specified.

Native to DC Metadata Converter

This module consists of the Metadata Converter, along
with the native metadata parsers. A parser is a program,
which analyzes the native metadata, parses it and
converts it to an intermediate format, which the
Metadata Converter can understand. Depending on the
native metadata format, the Metadata Converter uses
one of the native metadata parsers to extract native
metadata elements or to perform metadata translation.
Once a mapping is defined, the Metadata Converter in
this module uses the mapping and converts the native
files to DC format files. This is the key module to make
the tool extendable to support additional metadata
formats.

Metadata Publishing Tool

This module supports publishing metadata in DC
format. It has a user interface to add, modify, view and
delete metadata. Once information corresponding to
each DC element is specified using the user interface,
this module validates the data, and the data is stored in
the location specified for DC metadata files. Along with
the data, full text documents are also uploaded to the
DC metadata directory.

3.2 OAI Web Server

The Native to DC Metadata Converter module converts
the native files to DC files. This satisfies one criterion
for a repository to become OAI-PMH compliant. But,
the repository should also have the capability to respond
to OAI-PMH requests embedded in HTTP. The OAI
webserver takes care of this issue.

The main objective of this module is to listen and

respond to OAI requests. For this purpose the OAI web
server is classified into two sub-modules

• Lightweight HTTP Server
• OAI –PMH Data Provider

Figure 2. RVOT Architecture

Lightweight HTTP Server

This HTTP Server module performs the task of serving
HTTP requests. It only accepts OAI-PMH requests
embedded in HTTP requests and checks for protocol
compliance. If the request is not protocol compliant it
rejects the request, otherwise, it interacts with the OAI-
PMH data provider module to generate the right
response.

OAI-PMH Handler

This module is the core module of the OAI web server.
It accepts the approved (protocol compliant) request
from the lightweight HTTP server. From this HTTP
request, the actual OAI-PMH request is extracted to get
the exact OAI-PMH verb (action). Based on the action
requested, it queries the base directory and creates a
well-formed XML response. This XML response is then
handed over to the HTTP server, which embeds it into
an HTTP response and sends it out.

The request consists of a list of keyword arguments,
which take the form of key=value pairs. Each request
must have at least one key=value pair that specifies the
OAI-PMH request. In the key=value pair that specifies
the action, key corresponds to an OAI ‘verb’ and the
‘value’ is the value for ‘verb’ i.e. action to be
performed. The number and nature of additional
key=value pairs depends on the arguments for the
individual request. The following are the list of verbs
or actions supported by the RVOT’s OAI web server.

• GetRecord
• Identify
• ListIdentifiers
• ListMetadataFormats

• ListRecords
• ListSets

If the request is invalid, then an exception message is
sent to the client through the HTTP server, as
appropriate a status code is returned.

Once the validation is complete and the verb or
action is extracted, based on the action requested, the
OAI-PMH data provider consults the base repository
(directory) and constructs an OAI-PMH response. All
responses to OAI-PMH requests are well-formed XML
instance documents. The XML data for all responses to
OAI-PMH requests are validated against the XML
Schema specified by the OAI-PMH 2.0.

3.3 Integrated Graphical User Interface

The key for versatility of the RVOT is its ease of use
through an integrated graphical user interface, which
helps the user to perform various operations ranging
from metadata publishing to OAI-PMH support. The
graphical user interfaces provides for the following:

1. Metadata Mapping Definition Tool: This set of user

interfaces help the user to make format selection,
specify locations for metadata files, specify file
extensions and to specify mapping between native
and DC metadata elements. It also provides for
conversion of native metadata based on a mapping
specified earlier.

2. Metadata Publishing: This set of user interfaces
allows the DL user to publish DC metadata. The
DL user can add, edit, view and delete metadata. It
also provides a facility to upload full text
documents.

3. Administration: This set provides user interfaces
for administrative tasks related to repository

management and the OAI web server. The
administrative tasks include specifying
administrator name, e-mail id, and OAI-PMH
protocol version supported. The OAI web server
tasks include starting and stopping the OAI web
server, providing a base directory consisting of DC
metadata files to serve OAI-PMH requests, and
specification of a port number on which the OAI
web server is to run.

4. Other User interfaces: This set of user interfaces
display RVOT system logs, metadata conversion
history, web server status and history and also
provide online help to use the system effectively.

4 Extensibility
One of the key design features of RVOT is the ease of
adding support for additional metadata formats. For this
purpose, we introduced an intermediate format for
representing any metadata format. As shown in the
RVOT architecture diagram (Figure 2), the native
format metadata parsers convert the native metadata
into an intermediate format, which the tool can
understand. Figure 3 shows the functionality of a parser.
The tool uses the intermediate format data to perform
further processing.

Figure 3. Function of Native Format Metadata
Parser

The intermediate format is a Vector consisting of
values of the format ‘element=value’, where element is
the native metadata element and value is its
corresponding value. So, no matter for which native
format the parser is implemented, the job of the parser
is to analyze the format, parse the metadata and
construct the intermediate format vector and return it to
the tool.

The tool uses this intermediate format for two
purposes. One is to extract native metadata elements, to
display on the mapping interface and the second is to
convert the native metadata to DC metadata based on
the mapping specified.

This approach makes the tool independent of the
native format and thus makes RVOT extendable to
other metadata format. The process of extending the
tool involves implementing Parser Interface provided
along with the package for the new metadata format.

The class diagram of the metadata manager as
shown in Figure 4 illustrates the extensibility support
(names in the diagram give indication of code reuse –
Kepler project [10] – and metadata formats used, -
RFC_1807 [7], MARC [3] subset). The RFC1807
parser handles metadata in RFC 1807 format. The
MARC parser handles metadata used by NASA STI for
their technical reports, and is a subset of MARC format.

In later section, we describe how a developer can
incorporate new metadata formats in the RVOT.

Figure 4. Class Diagram for Metadata Manager

Suite

5 Sample Process of Metadata Conversion
In this section, we demonstrate the complete process as
to how MARC format (a subset of MARC used by
NASA STI) metadata is converted to DC metadata.
Initially, using the Format/Directory selection interface,
the MARC format is selected as the native metadata
format and locations for MARC metadata and DC
metadata are specified. The metadata converter module
carries out a sequence of operations and the Metadata
Mapping Interface is displayed. A mapping between
MARC and DC elements is specified and once it is
done, the metadata converter module carries out another
set of operations and converts MARC metadata files to
DC metadata files.

Figure 5 depicts the diagrammatic representation of
converting MARC format to DC format. The MARC
format parser converts metadata in MARC format to
intermediate format. The intermediate format is used for
extracting native elements and for metadata conversion.

Figure 5. Translation between MARC and DC

6 Prototype
The system is written in Java and uses the native file
system; it has a restricted web server and can be
running on any machine with JVM (Java Virtual
Machine) support. It does not require any other third-
party packages such as RDBMS or web server, which
makes the system easy to install and distribute. The
downloadable package is available at
http://rvot.sourceforge.net/.

The main interface (Figure 6) illustrates is the
entry point to the major RVOT functionalities,
including mapping availability, metadata conversion,
and web server control. The user can follow the
menus and run tasks in each sub-system. Figure 7 and
Figure 8 show how to define the mapping table
between different metadata formats. In Figure 8, a
conversion is executed using the mapping defined
earlier. Figure 9 shows the simple metadata
publishing tool for DC.

7 Conclusion and Future Work
RVOT provides a simple and effective way to create
an OAI-PMH compliant repository. We have
completed the implementation and made the package
available for use by the OAI community.

Table 2 summarizes the usage statistics for RVOT
till date. These statistics are obtained from
SourceForge.net website.

Table 2. Usage Statistics for RVOT
Lifespan Page Views Downloads
281 days 3266 123

Based on our initial release, we have received

some encouraging and positive feedback and we have
the following future plans for RVOT.

• At present RVOT supports native format files

located on the local hard disk. We plan to
enhance this by supporting URLs for the native
metadata format files.

• Currently, the mapping definitions and DC
metadata can be exported or imported by
working with the file system i.e. accessing the
appropriate directories and placing the mapping
definition files or metadata files. This process of
importing and exporting of mapping definitions
and DC metadata files can be automated and can
be done using the integrated graphical user
interface.

• Currently, the process of exporting DC metadata

is manual and it just allows DC metadata files to
be copied (backup) to another location on the
filesystem. The Export process can be automated
not only to backup DC metadata but also to
generate DC metadata in Static Repository
format [13].

• Currently, to customize the tool to support other

native metadata formats, the user has to write
his/her own parser and place it in a particular
directory and change some parameters in a
particular file. The system can be enhanced such
that the parsers can be generated automatically
by taking some input from the user. Overall, this
tool is semi-automated with respect to format,
and this can be completely automated.

 Figure 6. Main RVOT Interface

Figure 7. Mapping Native Metadata Format to DC

Figure 8. Location of Directories Interface

Figure 9. Publication Interface

References
[1] CERN Document Server Software (CDSware).

http://cdsware.cern.ch.
[2] EPrints.org self-archiving FAQ.

http://www.eprints.org/self-faq/.
[3] MARC Standards, Library of Congress.

http://www.loc.gov/marc/.
[4] NCSA’s COCOA (Components for Constructing

Open Archives).
ftp://emerge.ncsa.uiuc.edu/pub/cocoa/cocoa.jar.

[5] The Open Archives Initiatives.
http://www.openarchives.org.

[6] The OAI Tools.
http://www.openarchives.org/tools/index.html.

[7] D. Cohen, R. Lasher. “A format for bibliographic
records”. Technical Report Internet RFC 1807,
IETF, 1995.
http://www.faqs.org/ftp/rfc/rfc1807.txt.

[8] C. Lagoze, H. Van de Sompel, M. Nelson, S.
Warner. “The Open Archives Initiative Protocol
for Metadata Harvesting, version 2.0”.
http://www.openarchives.org/OAI/openarchivesp
rotocol.html.

[9] C. Lagoze, H. Van de Sompel. “The Open
Archives Initiative: Building a low-barrier
interoperability framework”. In Proceedings of
the First ACM/IEEE Joint Conference on Digital
Libraries, Roanoke, VA, pages 54-62.
http://www.cs.cornell.edu/lagoze/papers/oai-
final.pdf.

[10] K. Maly, M. Zubair, X.Liu. “Kepler—an OAI
data/service provider for the individual”. D-Lib
Magazine, 7(4), April 2001.
http://www.dlib.org/dlib/april01/maly/04maly.ht
ml.

[11] M. Smith, M. Barton, M. Bass, M. Branschofsky,
G. McClellan, D. Stuve, R. Tansley, and J. H.
Walker. “DSpace - an open source dynamic
digital repository”. D-Lib Magazine, 9(1),
January 2003.
http://www.dlib.org/dlib/january03/smith/01smit
h.html.

[12] H. Suleman. “Enforcing interoperability with the
Open Archives Initiative repository explorer”. In
Proceedings of the ACM/IEEE Joint Conference
on Digital Libraries, pages 63-64, Roanoke VA,
June 24-28 2001.

[13] H. Van de Sompel, C. Lagoze, M. Nelson, S.
Warner, P. Hochstenbach, H. Jerez.
“Specification for an OAI Static Repository and
an OAI Static Repository Gateway”.
http://www.openarchives.org/OAI/2.0/guidelines-
static-repository.htm.

[14] S. Weibel, J. Kunze, C. Lagoze, and M. Wolfe.
“Dublin Core metadata for resource discovery”.
Technical Report Internet RFC-2413, IETF,
1998.
http://www.ietf.org/rfc/rfc2413.txt.

1 Throughout the paper a ‘user’ – unless specifically
qualified - is the administrator within a small organization
who makes its digital library OAI-PMH compliant.

